Please use this identifier to cite or link to this item: https://hdl.handle.net/10620/17827
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIvy, Liu-
dc.contributor.authorCostilla, Roy-
dc.date.accessioned2019-04-13T03:38:37Zen
dc.date.accessioned2014-03-24T01:17:27Zen
dc.date.available2014-03-24T01:17:27Zen
dc.date.issued2013-11-25-
dc.identifier.urihttps://hdl.handle.net/10620/17827en
dc.identifier.urihttp://hdl.handle.net/10620/3915en
dc.description.abstractTraditional cluster analysis methods are not based on likelihoods and thus the toolbox of statistical inference can’t be used for them. For instance, goodness of fit can’t be assessed using well-developed criteria such as the AIC. Following the lines of Pledger and Arnold 2013, we develop likelihood-based probability models to cluster ordinal data that arises in longitudinal settings. In this talk, we present the Trends Odds Model (TOM) that includes mixture-based fuzzy clustering to identify similar groups. The estimation procedure is carried out using the EM algorithm. We also illustrate our models using survey data from the Household, Income and Labour Dynamics in Australia (HILDA). In particular, we examine self-reported health status (poor, fair, good, very good and excellent) from the 2001-2010 waves.en
dc.subjectSurveys and Survey Methodologyen
dc.subject.classificationSurveys and Survey Methodologyen
dc.titleCluster analysis for longitudinal ordinal data: A likelihood-based approach based on finite mixture modelsen
dc.typeConference Presentationsen
dc.identifier.urlhttp://orsnz.org.nz/conf47/content/NZSA2013ColourV2.pdfen
dc.identifier.surveyHILDAen
dc.description.keywordsFinite mixturesen
dc.description.keywordsEM algorithmen
dc.description.keywordsOrdinal dataen
dc.description.keywordsCluster analysisen
dc.description.conferencelocationHamilton, New Zealanden
dc.description.conferencenameNew Zealand Statistical Association Annual Meetingen
dc.identifier.refereedYesen
local.identifier.id4379en
dc.description.formatOral presentationen
dc.identifier.emailauthoren
dc.date.conferencestart2013-11-24-
dc.date.conferencefinish2013-11-27-
dc.date.presentation2013-11-25-
dc.subject.dssSurveys and survey methodologyen
dc.subject.dssmaincategorySurveys and Survey Methodologyen
dc.subject.flosseSurveys and Survey Methodologyen
dc.relation.surveyHILDAen
dc.old.surveyvalueHILDAen
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeConference Presentations-
item.fulltextNo Fulltext-
Appears in Collections:Conference Presentations
Show simple item record

Page view(s)

1,226
checked on Dec 21, 2024
Google icon

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.