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Abstract 

We examine the effect of temperature shocks on the proclivity to be in energy poverty and 

combine our estimates with simulated weather data to predict the effect of global warming 

on the incidence of energy poverty over the rest of the century. To do so, we match 

representative household panel data for Australia with weather data at a geographically 

localized level. We find that each additional ‘cold day’ (average temperature below 15oC) 

increases the incidence of energy poverty by 0.01%-0.03%, compared to if the day had 

been in the comfortable temperature range (20-24oC). We find that global warming can be 

expected to result in modest decreases in the extent of energy poverty in the short-medium 

and long-run. Most studies have emphasized the economic and social costs of climate 

change. Our findings are important in pointing to a specific outcome for which climate 

change may be beneficial for a large country with a relatively mild climate.  
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1. Introduction 

The effect of temperature increases, due to climate change, are expected to have negative 

effects on a range of outcomes. For example, global warming, as a consequence of climate 

change, is expected to result in higher crime rates (Ranson, 2014), more natural disasters 

(Benevolenza & DeRigne, 2019), poorer health outcomes (Woodward et al., 2014) and 

increased prevalence of violent conflict (Scheffran et al., 2012). One outcome that has received 

little attention is the effect of global warming on the incidence of energy poverty. While a 

number of definitions of energy poverty exist, in their review of energy poverty indicators, 

Siksnelyte-Butkiene et al. (2021, p. 1) suggest: “All energy poverty definitions can be 

summarized into two main categories – (i) very high share of income spent on energy needs, 

and (ii) inability to consume modern energy for various reasons”.  The first category is typically 

employed in studies for developed countries, while the latter is a common use of energy poverty 

in studies for developing countries. In a developed country context Lowans et al. (2021, p. 1) 

state: “The term ‘energy poverty’ commonly refers to the inability of a home or small business 

to afford an adequate supply of heat, electricity, or energy services”. Thus, while inability to 

afford energy focuses attention on the combination of low incomes and high energy prices, 

energy inefficiency also contributes to households being in energy poverty, especially given 

that low-income households tend to live in less energy efficient homes and use appliances that 

consume more energy and are more costly to run (Farrell & Fry, 2021).  

The effect of temperature increases on the incidence of energy poverty can be expected to 

depend on the climate. In cold climates, in which energy poverty is typically associated with 

the inability to adequately heat one’s home, one might expect temperature increases to 

unambiguously lower the incidence of energy poverty holding other factors constant. However, 

in warm climate countries, in which energy poverty is primarily due to the cost of cooling, 

rising temperatures might exacerbate energy poverty. This is because in countries, or regions, 

with hot climates, spikes in energy consumption, contributing to energy poverty, are mainly 

due to extremely hot days (Auffhammer & Aroonruengsawat, 2011; Chai et al., 2021; 

Deschênes & Greenstone, 2011). Moreover, low-income households are often not on the best 

energy plan to minimize the cost associated with energy spikes on hot days (Uddin et al., 2021). 

The effect of temperature increases, due to climate change, on the incidence of energy poverty 

in countries such as Australia, which is where our study is situated, which have very large 

landmasses with considerable regional differences in climate, is somewhat ambiguous and may 

depend on the extent to which energy poverty is due to the cost of heating or cooling. 

We examine the effect of temperature shocks on the incidence of energy poverty in Australia. 

To do so, we employ 16 waves of the Household Income Labour Dynamics Australia (HILDA) 

survey, which we match with data on temperature at the postcode level.1 We find that each 

additional ‘cold day’ (average temperature below 15oC) increases the incidence of energy 

poverty by 0.01%-0.03%, compared to if the day had been in the comfortable temperature 

range (20-24oC). Combining this result with simulated weather data from the NASA Earth 

 
1 The postcode is a small geographical area in Australia. In urban areas, a postcode broadly corresponds to a town 

or suburb. In rural or regional areas, postcodes are larger in area terms, but because population density is lower, 

still have relatively few people. There are approximately 3,000 postcodes in Australia; the average area is 2,911 

square kilometres with each postcode having an average population of 9,075 people. 



Exchange (NEX) Global Daily Downscaled Projections (GDDP) and the CMIP6 Project, we 

also quantify the effects of global warming on the prevalence of energy poverty over the rest 

of the twenty-first century. We show that global warming change can be expected to result in 

modest decreases in the incidence of energy poverty in the short, medium and long-run.  

The only other study to examine how temperature shocks affect the incidence of energy poverty 

is Feeny et al. (2021) who find that in Vietnam temperature shocks lead to an increase in energy 

poverty. We differ from Feeny et al. (2021) in that in addition to examining how temperature 

shocks influence the extent of energy poverty, we also quantify the short, medium and long-

term effects of global warming on energy poverty. Feeny et al. (2021) emphasise that their 

results are important when considering the effect of climate change on the incidence of energy 

poverty. For instance, they note that “understanding the varied impacts of higher temperatures 

is crucial to forming a measured view of the implications of climate change” (Feeny et al., 

2021, p. 11). However, they do not use their results to simulate the long-term effects of global 

warming on the prevalence of climate change. We also differ from Feeny et al. (2021) in that 

while they find that temperature shocks increase the prevalence of energy poverty, we find that 

they lower the likelihood of being in energy poverty. This has important implications for the 

long-term effects of global warming on the extent of energy poverty. Feeny et al. (2021, p. 11) 

conclude “given the link between climate change and temperature shocks, the international 

community should strengthen its commitment to reduce carbon emissions in order to curb 

future temperature increases”. While their results imply that global warming would increase 

the proclivity to be in energy poverty, we find that projected temperature increases due to 

global warming lowers the incidence of energy poverty. That our findings differ from Feeny et 

al. (2021) likely reflects that Vietnam, which is geographically closer to the equator, has a 

warmer climate than Australia, so more energy is used for cooling than in Australia. Low-

income households in Vietnam are also more susceptible to the effect of temperature shocks 

on agricultural productivity which affects energy poverty through an income channel. 

Our study also intersects with a broader literature on energy poverty and climate change. This 

literature asks the question whether taking steps to reduce energy poverty will contribute to 

climate change. These studies generally find that policies to reduce energy poverty will lead to 

greater carbon emissions by increasing energy consumption; thus, exacerbating climate change 

(see, e.g., Chakravarty & Tavoni, 2013). These effects are likely compounded by the high costs 

to low-income households of switching to renewable sources of energy, such as solar (Farrell 

& Fry, 2021). This literature tends to conclude that the best way to solve the trade-off between 

energy poverty alleviation and global warming is through improving energy efficiency (Ürge-

Vorsatz & Tirado Herrero, 2012). We ask the opposite question: what are the implications of 

climate change for energy poverty? Our findings suggest that there need not be a trade-off, but 

rather that global warming can be complementary to reducing energy poverty.      

2. Data 

To examine the effect of temperature shocks on energy poverty, we use data from two mains 

sources. The first source is individual- and household-level data from HILDA. The HILDA 

survey is a nationally representative longitudinal study that provides information on family, 

household formation and socioeconomic indicators of Australians. The annual survey, which 

is described in more detail in Watson and Wooden (2012), commenced in 2001. We use 

Restricted Release 20 of the survey, which includes annual data covering the years 2001 to 



2020. Our analysis is, however, restricted to waves 5 to 20 given that information on energy 

expenditure, used to measure energy poverty, is only available in these waves. The Restricted 

Release of HILDA provides information on the postcode in which respondents live. The use 

of the Restricted Release allows us to merge the HILDA survey data with ERA5 satellite 

reanalysis data, which is taken from our second data source, ECMWF. ERA5 combines 

information from ground stations, satellites, weather balloons and other inputs with a climate 

model to provides hourly estimates of several climate-related variables at a grid spacing of 

around 31 km globally with data available since 1979 (Dell et al., 2014). We use air 

temperature, measured as annual averages, and map the grid spacings in ERA5 to postcodes. 

To examine the impact of future climate change on energy poverty, we obtain climate change 

prediction data from the NASA Earth Exchange (NEX) Global Daily Downscaled Projections 

(GDDP) and the CMIP6 Project. The NEX-GDDP-CMIP6 data provides average temperature 

projections for the short term (2020 to 2040), the medium term (2041–2060) and the long term 

(2061–2099) using nine global climate models (GCMs).2 

2.1.Temperature shocks 

We define temperature shocks at time 𝑡 for postcode (𝑝) as the difference between observed 

temperature at 𝑡 and the long-run mean for each postcode 𝑝, divided by the long-run standard 

deviation for the postcode (see, e.g., Graff Zivin et al., 2020; Hirvonen, 2016; Letta et al., 

2018). This measure of temperature shock represents the deviation in actual temperature from 

the historical mean for postcode p in time t, standardised by the standard deviation, and, thus, 

reflects both cold and hot temperature shocks. Our main measure of temperature shocks entails 

dividing the daily average temperature into one of five temperature bins: bin 1 is temperature 

below 15oC; bin 2 is temperature between 15oC and 19oC; bin 3 is temperature between 20oC 

and 24oC; bin 4 is temperature between 25oC and 29oC; and bin 5 is temperature above 29oC. 

The choice of temperature bin as the reference category depends on the country or regional 

climate (Karlsson & Ziebarth, 2018; White, 2017; Yu et al., 2019), with the most comfortable 

temperature range in a country or region typically employed as the reference bin (Yu et al., 

2019). Given that Australia’s climate is generally mild, we employ bin 3 (temperatures between 

20oC and 24oC) as the reference category. In robustness checks, we consider the sensitivity of 

our results to alternative bin classifications, as well as different reference categories.  

We also examine the robustness of our results to alternative measures of temperature shocks 

based on temperature deviations. We consider hot and cold temperature shocks separately 

where we define temperature shocks in terms of extreme heat (i.e., hot shocks) as temperature 

greater than one standard deviation above the mean and extreme cold (i.e., cold shocks) as 

temperature less than negative one standard deviation below the mean.  

2.2.Energy poverty 

We use measures of energy poverty that reflect both objective and subjective dimensions of 

energy poverty (Awaworyi Churchill & Smyth, 2021; Awaworyi Churchill et al., 2020; Llorca 

et al., 2020; Munyanyi et al., 2021; Prakash & Munyanyi, 2021). Our subjective indicator of 

energy poverty is designed to reflect the level of material deprivation that is perceived by 

 
2 The nine GCMs are MRI-ESM2-0, MIROC6, MIROC-ES2L, IPSL-CM6A-LR, BCC-CSM2-MR, CNRM-

ESM2-1, CNRM-CM6-1, GFDL-ESM4, CanESM5. Details are available at:  

https://www.worldclim.org/data/cmip6/cmip6climate.html  

https://www.worldclim.org/data/cmip6/cmip6climate.html


households that are unable to heat their homes (Awaworyi Churchill & Smyth, 2020; 

Awaworyi Churchill et al., 2020; Prakash & Munyanyi, 2021). We use a question in HILDA 

which asks respondents: “did any of the following happen to you because of a shortage of 

money?” The subjective indicator of energy poverty is a dummy variable equal to one if the 

respondent selects “was unable to heat home” in response to the question. In checks, we 

consider an alternative measure of subject energy poverty based on the question in HILDA, 

which asks respondents if they “could not pay electricity, gas or telephone bills on time” 

because of shortage of money. We use an energy poverty indicator that is a dummy variable 

equal to one if the respondent agrees that they could not pay their bills on time. This is a 

relatively noisy measure of energy poverty given that in addition to electricity and gas, it also 

captures telephone bills. However, we include it as an additional indicator of subjective energy 

poverty given that it has been used in the literature (see, e.g., Farrell & Fry, 2021). 

To measure objective energy poverty, we employ the “low income-high cost” (LIHC) measure 

(Hills, 2012), which reflects households’ low-income status and the high energy costs that they 

face. With the LIHC measure, a household is in energy poverty if their “energy costs are above 

the median level and were they to spend that amount they would be left with a residual income 

below the official poverty line” (Hills, 2012, p. 9). The objective indicator of energy poverty 

is equal to one if a household’s condition is consistent with the LIHC criteria defined above. 

We use the LIHC indicator in preference to the expenditure-income indicator in our main 

analysis, given that the latter “is likely to either understate or overstate energy poverty rates 

depending on household income and/or energy rationing practices” (Awaworyi Churchill & 

Smyth, 2021, p. 4).3 In robustness checks, we the 5%, 10% and 15% threshold indicators based 

on this ratio. The use of different cut-offs has the advantage that it avoids relying on a single 

threshold. We find that the results are robust to alternative measures of energy poverty. 

3. Empirical Strategy 

We estimate the following empirical specification: 

 

𝐸𝑃𝑖𝑝𝑡 =  𝛾0 + ∑ 𝛽𝑗𝑇𝑝𝑗𝑡

5

𝑗=1

+  𝛿𝑝𝑅𝑝𝑡 + 𝜑𝑖 + 𝜇𝑠 + 𝛿𝑡 + 𝜀𝑖𝑡 

(1) 

where 𝐸𝑃𝑖𝑡 is the energy poverty status of household 𝑖 living in postcode 𝑝 in year 𝑡, where EP 

is either the LIHC or ‘unable to heat’ indicators. 𝑇𝑝𝑗𝑡 is the measure of temperature shock for 

postcode 𝑝 in the period (𝑡) and captures the number of days that fall into each of the five 

average temperature bins with bin 3 excluded as the reference category. 𝑅𝑝𝑡 is an indicator 

measuring rainfall for postcode 𝑝 in period (𝑡). Household fixed effects (𝜑𝑖), state fixed effects 

(𝜇𝑟) and time fixed effects (𝛿𝑡) are also included to absorb the effects of unobservable 

household, time-invariant state or time characteristics, and 𝜀𝑖𝑡 denotes the error term.  

We cluster standard errors at the postcode level. By controlling for household and year fixed 

effects, the impact of temperature shocks is identified from location-specific deviations in 

temperature, while controlling for annual shocks common to all postcodes. In various 

sensitivity checks, we also control for a wider range of fixed effects including location-by-year 

fixed effects and time trends among others. Dell et al. (2014) caution against controlling for 

 
3 For a more general discussion of the limitations of the threshold measure see  (Awaworyi Churchill et al., 2020; 

Boardman, 1991; Herrero, 2017; Hills, 2012; Thomson et al., 2017). 



household demographic characteristics which might be influenced by temperature shocks. 

Thus, to avoid “over controlling”, in our main analysis we specify our model without household 

covariates. However, in robustness checks, for completeness we include demographic controls 

and our main conclusions remain qualitatively unchanged. 

4. Results 

 

4.1.Impact of temperature shocks on energy poverty 

Table 1 reports the impact of temperature on energy poverty. Columns (1) and (2) present 

results for effects on LIHC using OLS and the panel fixed effect method, respectively, while 

Columns (3) and (4) run similar models focussed on the effects of temperature on the subjective 

indicator of energy poverty. For both the LIHC and ‘unable to heat’ measures, with the 

preferred panel fixed effect specification that controls for household fixed effects, the number 

of days when daily average temperatures are below 15oC has a positive effect on energy 

poverty, relative to the number of days in the 20-24oC range. Specifically, having one 

additional day with an average temperature below 15oC increases the probability of being in 

energy poverty by 0.03% based on the LIHC measure and 0.01% based on the ‘unable to heat’ 

measure, compared to if the day had been in the 20-24oC temperature range. 

For other temperature bins, the results are mixed across measures, although there is some 

evidence of non-linear effects. For the LIHC measure, the number of days in the 25-29oC range 

has a positive effect on energy poverty, while for the ‘unable to heat’ measure, the number of 

days between 15-19oC category has a positive effect on energy poverty, relative to the reference 

category with panel fixed effects. The other temperature bins are insignificant. The results for 

‘unable to heat’ for the 25-29oC and days above 29oC bins are to be expected, given that 

subjective ability to heat the home is unlikely to be an issue on warmer days. A limitation of 

the HILDA dataset is that it does not ask whether households were ‘unable to cool’.   

The main results in Table 1 are based on temperature shocks measured using temperature bins, 

which is the most widely used approach in the literature (see, e.g., Agarwal et al., 2021; Graff 

Zivin et al., 2020; Taraz, 2018; Zhang et al., 2018). In Table 2, we use an alternative measure 

of temperature shocks, where we define temperature shocks for each postcode at a given time 

as the difference between observed temperature and the long-run average for each postcode 

divided by the long-run standard deviation for the postcode (see, e.g., Graff Zivin et al., 2020; 

Hirvonen, 2016; Letta et al., 2018). This measure of temperature shock represents the deviation 

in actual temperature from the historical mean for a postcode, standardised by the standard 

deviation. We also use indicators of temperature shocks that isolate the effects of extreme hot 

weather shocks from extreme cold shocks. We measure hot shocks as temperature deviation 

greater than one standard deviation above the mean and cold shocks as temperature deviation 

less than one standard deviation below the mean. We find that our results are consistent. 

Specifically, in Panel A, temperature deviations are associated with a decline in energy poverty, 

implying that hot shocks are likely to be driving the results. This is reinforced by the findings 

in Panels B and C, where hot temperature shocks are associated with a decline in energy 

poverty, while cold shocks are associated with an increase in energy poverty.  

 

 



4.2.Climate change projections and energy poverty 

We simulate changes in future levels of energy poverty due to climate change. To do this, we 

combine the estimate from Panel A of Table 2 with data on simulated weather conditions at 

the postcode level for 2021 to 2099. We focus on RCP4.5 and RCP8.5, which are two extreme 

emission pathways that represent opposite ends of the climate spectrum depending on the 

uptake of renewable energy.4 Given that estimates of the economic effects of climate change 

are sensitive to the specific choice of GCM (Burke et al., 2015), we use future projections from 

eight of the nine GCMs at 2.5-minutes spatial resolution to ensure that our results are robust.5 

Following Burke et al. (2009), we generate monthly average temperature projections. First, for 

2001 to 2020, we use daily average temperature to construct monthly average temperature and 

probability distribution functions. We then calculate projected changes in monthly average 

temperatures as the difference between the projected and the historical average temperatures. 

Finally, we assume that the distribution of the projected average temperatures closely mirror 

that of historical temperature and, thus, construct the distribution of average temperature in the 

short, medium and long terms for the RCP4.5 and RCP8.5 emission pathways.  

Table 3 provides a summary of the projected changes for temperature and LIHC for each of 

the eight GCMs for the RCP4.5 and RCP8.5 emission pathways in the short, medium and long 

terms, while Table 4 does the same for the projected changes for temperature for the subjective 

‘unable to heat” indicator. Under the RCP4.5 and RCP8.5 pathways, the average change in 

temperature peaks at 1.448 and 1.807 standard deviations, respectively, in the long-term.  

In Table 3, using the maximum temperature projection across CGMs for the RCP4.5 pathway, 

average temperature increases are associated with, at most, a 0.024, 0.025 and 0.027 standard 

deviation decrease in energy poverty in each of the short, medium and long terms, respectively. 

For the RCP8.5 pathway, average temperature increases are associated with, at most, a 0.024, 

0.028 and 0.033 standard deviation decrease in energy poverty based on the LIHC indicator in 

the short, medium and long terms, respectively. Thus, without any countervailing strategies to 

address climate change between 2021 and 2099, in the form of investment in renewable energy, 

there would be an additional 0.006 standard deviation decrease in energy poverty as a result of 

climate change, compared with the ‘best case’ RCP4.5 scenario.6 

In Table 4, for the RCP4.5 pathway, average temperature increases are associated with, at most, 

a 0.010, 0.011 and 0.011 standard deviation decrease in energy poverty in the short, medium 

and long terms, respectively. For the RCP8.5 pathway, average temperature increases are 

associated with, at most, a 0.009, 0.012 and 0.014 standard deviation decrease in energy 

poverty in the short, medium and long terms, respectively. Thus, without any countervailing 

strategies to address climate change, there would be an additional 0.003 standard deviation 

 
4 RCP is the Representative Concentration Pathway, which captures future trends in climate change under 

alternative scenarios of human activities. RCP8.5 tracks emissions consistent with current trends (business as 

usual scenario in which greenhouse gas emissions go unchecked), while RCP4.5 considers a scenario with 

increased reliance on renewable energy and less reliance on coal-fired power.  
5 GFDL-ESM4 is excluded because future projections are not available for this under the RCP8.5 pathway.  
6 Under RCP4.5, in which the government actively promotes renewables, we can expect at most a 0.027 standard 

deviation decrease in energy poverty and under RCP8.5, in which the government does nothing, we can expect at 

most a 0.033 standard deviation decrease in energy poverty. The difference in outcomes under the two pathways 

is a 0.006 standard deviation decrease in energy poverty.   



decrease in energy poverty based on the subjective ‘unable to heat’ indicator as a result of 

climate change compared with the ‘best case’ RCP4.5 scenario. 

4.3.Robustness checks 

We examine the sensitivity of our results to three alternative indicators of energy poverty based 

on the ratio of energy expenditure to income. While our preference is to use the LIHC indicator 

to capture objective energy poverty given its benefits over the threshold indicators, we also 

employ the threshold indicators for completeness. Threshold indicators, especially the 10 per 

cent threshold, which is based on the energy expenditure-income ratio is one of the most widely 

used indicators of energy poverty (Awaworyi Churchill & Smyth, 2020, 2021; Boardman, 

1991; Healy & Clinch, 2004; Thomson et al., 2017). We consider 5%, 10% and 15% as 

thresholds, which we choose to overcome the sensitivity of our results to the use of a single 

threshold. The results, which are reported in Table 5, remain robust to these alternative 

measures. Specifically, having one additional day with an average temperature below 15oC 

increases the probability of being in energy poverty by 0.01% to 0.06%, compared to if the day 

had been in the 20-24oC temperature range, depending on threshold. Our results are also robust 

to the alternative indicator of subjective energy poverty which reflects respondents’ inability 

to pay their electricity, gas and telephone bills on time as a result of money shortage. One 

additional day with an average temperature below 15oC increases the probability of being 

unable to pay the electricity, gas or telephone bills on time as a result of money shortage by 

0.06%, compared to if the day had been in the 20-24oC temperature range 

Next, we examine if our results are robust to the use of different temperature bins and reference 

temperature groups. Our main results are based on five temperature bins. In Panels A and B of 

Figure 1, we measure temperature shocks using seven and nine temperature bins, respectively, 

with different reference categories. In each case, our results are consistent with the findings 

that lower temperatures, relative to more normal temperature ranges, are associated with higher 

energy poverty. Consistently, across Panels A and B, we find that an additional day with an 

average temperature below 10oC increases the probability of being in energy poverty.  

In the main results, the most comfortable temperature range is used as the reference range. For 

a country with an overall mild climate, such as Australia, this averages around 20-24oC (Graff 

Zivin et al., 2018). However, Australia’s climate varies significantly, and in warmer regions, 

particularly in the northern states, the most comfortable temperature range is likely to be 

different from that in the colder states in the south of the country. In further checks, we employ 

a higher temperature bin (25-29oC) as the reference in warmer postcodes and a lower 

temperature bin (16-18oC) as a reference category in the colder postcodes.7 The results, 

reported in Figures 2 and 3, are consistent with the conclusion that one additional day with a 

relatively lower average temperature increases the probability of being in energy poverty.  

Past temperatures are likely to influence current economic outcomes, such as energy poverty, 

and may be correlated with current temperature. To address this potential source of bias, we 

consider alternative models in which we include one-year and two-year lagged temperature 

bins. In Table 6, we find that our results remain robust. We also find that the one- and two-year 

lags are statistically significant with the effects of temperature waning over time.  

 
7 Following Awaworyi Churchill et al. (2020), we consider postcodes and temperatures with actual temperatures 

above and below the mean as ‘warm’ and ‘cold’, respectively. 



Different socioeconomic conditions, as well as differences in temperature across states, means 

that the observed effects of temperature shocks could be stronger in some states than others. 

To ensure that our results are not being driven by the effects of a single state, we drop each 

state one-by-one in alternating models. The results, which are presented in Figure 4, show that 

our results in each case are close to baseline and are not driven by any specific state.  

Next, we control for additional fixed effects that take into account the month in which the 

HILDA interview took place as well as control for state-specific time trends8. The results, 

which are presented in Table 7, suggest that our results remain robust.  

As a final check on our main results, we examine if omitted variables are biasing our estimates. 

In Table 1, we do not control for the characteristics of the respondent, which are potentially 

endogenous, to avoid over controlling (Dell et al., 2014). In a first check, consistent with the 

energy poverty literature, we control for characteristics of the household reference person. Our 

controls for characteristics of the household reference person include age, marital status, 

number of dependants, education, and health status. The results, which are presented in Table 

A2, show that the effects of temperature shocks are similar to those in Table 1. Specifically, 

having one additional day with an average temperature below 15oC increases the probability 

of being in energy poverty based on the LIHC and subjective indicators by 0.03% and 0.01%, 

respectively, compared to if the day had been in the 20-24oC temperature range.  

As a second check on omitted variables bias, we conduct the Oster (2019) bounds analysis 

which allows for partial identification of the impact of temperature shocks on energy poverty 

and constructs consistent bounds on the ‘true’ coefficients that would have been estimated 

assuming that information on all unobserved and observed covariates were known. In doing 

this, we examine the sensitivity of the estimates in Table 1 to the inclusion of observed 

covariates as shown in Table A2, and establish coefficient stability (Altonji et al., 2005).  

Table 8 reports results from the bounds analysis. Panels A and B report results for LIHC and 

the subjective indicator, respectively. Columns 1 and 3 report estimates of the effect of 

temperature shocks on energy poverty from the uncontrolled and controlled models, 

respectively. Column 3 shows the identified set of upper and lower bounds of the estimated 

coefficients, while Column 4 shows whether this set exclude zero. The upper and lower bounds 

show that the identified set excludes zero, implying that the estimates from the controlled 

regressions are robust to omitted variable bias. In Column 5, the ratio of the impact of 

unobserved covariates relative to observed covariates which shows the effect for unobserved 

variables to bias our estimates is reported. We find that for LIHC this value is 14.22 and for 

the subjective indicator, 2.244. These values imply that the effects of any omitted variables 

have to be more than 2.3 to 14.2 times larger than the effects of the included covariates, which 

seems unlikely. This suggests that our results are robust to omitted variable bias.  

5. Conclusion 

We have examined the effect of temperature shocks on the incidence of energy poverty and 

used the results to project the effect of global warming on the prevalence of energy poverty in 

the short, medium and long terms. We find that each additional ‘cold day’ increases the 

 
8 HILDA interviews typically take place between the months of July to November, with most interviews 

occurring in August, September and October.  



incidence of energy poverty and that global warming, associated with climate change can be 

expected to have modest effects on decreasing the extent of energy poverty.  

Most of the literature has emphasised the negative effects of climate change for myriad 

outcomes. Conceptually, though, the effects of global warming on the prevalence of energy 

poverty are uncertain. Our results are consistent with there being at least modest initial benefits 

of climate change for energy poverty reductions over the rest of the century. However, in the 

very long-run, it is certainly possible that these benefits may dissipate and become costs as 

temperature continues to rise beyond the projections to the turn of the century. In this respect, 

our results are consistent with studies of the economic effects of climate change reviewed in 

Tol (2009, p. 34) that “point to initial benefits of a modest increase in temperature followed by 

losses as temperatures increase further”. A caveat on our findings is that the benefits are likely 

greater, and more long-lasting, for countries with colder climates than Australia, with the 

opposite being the case for countries with hotter climates where higher temperatures will more 

quickly exacerbate the costs of cooling. Initial differences in climate are likely to be important 

in explaining the differences in our results and those reported in Feeny et al. (2021), which 

suggest that higher temperatures are associated with an increase in energy poverty in Vietnam. 
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Table 1: Temperature shocks and energy poverty – Main results 

 LIHC Unable to heat 

 OLS Panel OLS Panel 

 (1) (2) (3) (4) 

Temperature (Reference: # days temperature between 20-24oC) 

# days below 15oC 0.0004*** 0.0003*** 0.0000 0.0001** 

 (0.0001) (0.0001) (0.0000) (0.0000) 

# days between 15-19oC 0.0001 0.0001 -0.0000 0.0001** 

 (0.0001) (0.0001) (0.0001) (0.0000) 

# days between 25-29oC 0.0004*** 0.0002*** -0.0001 0.0000 

 (0.0001) (0.0001) (0.0001) (0.0000) 

# days above 29oC 0.0005** 0.0001 -0.0001 -0.0002 

 (0.0002) (0.0002) (0.0001) (0.0001) 

     

Controlling for rainfall  Yes Yes Yes Yes 

Household FE No Yes No Yes 

State and Time FE Yes Yes Yes Yes 

Observations 122,523 122,523 123,630 123,630 

Notes: Clustered standard errors at postcode level in parentheses; *** p<0.01, ** 

p<0.05, * p<0.1 

 

 

 

  



Table 2: Results using temperature deviation 

 LIHC Unable to heat 

 (1) (2) 

Panel A: Temperature deviation 

Temperature deviations -0.0185*** -0.0078** 

 (0.0050) (0.0034) 

Panel B: Hot temperature (deviation > 1) 

Hot temperature -0.0068*** 0.0017 

 (0.0023) (0.0017) 

Panel C: Cold temperature (deviation < -1) 

Cold temperature 0.0094*** 0.0051*** 

 (0.0026) (0.0019) 

   

Controlling for rainfall Yes Yes 

Household FE Yes Yes 

State and Time FE Yes Yes 

Observations 122,466 123,606 

Notes: Clustered standard errors at postcode level in 

parentheses; *** p<0.01, ** p<0.05, * p<0.1 

 

  



Table 3: Simulated effect of temperature on incidence of ‘LIHC energy poverty 2021-

2099 

 Representative Concentration Pathway (RCP) 4.5 

 Short-term (2021-2040) Medium-term (2041-2060) Long-term (2061-2099) 

GCM Models Temperature LIHC Temperature  LIHC Temperature  LIHC 

BNU_ESM 1.246 -0.023 1.297 -0.024 1.400 -0.026 

CCSM4 1.266 -0.023 1.314 -0.024 1.384 -0.026 

CNRM_CM5 1.180 -0.022 1.245 -0.023 1.326 -0.025 

CanESM2 1.261 -0.023 1.356 -0.025 1.448 -0.027 

IPSL_CM5A_MR 1.279 -0.024 1.361 -0.025 1.472 -0.027 

MIROC_ESM 1.286 -0.024 1.313 -0.024 1.441 -0.027 

MIROC_ESM_CHEM 1.257 -0.023 1.327 -0.025 1.447 -0.027 

MRI_CGCM3 1.142 -0.021 1.181 -0.022 1.269 -0.023 

 Representative Concentration Pathway (RCP) 8.5 

 Short-term (2021-2040) Medium-term (2041-2060) Long-term (2061-2099) 

GCM Models Temperature  LIHC Temperature  LIHC Temperature  LIHC 

BNU_ESM 1.246 -0.023 1.297 -0.024 1.400 -0.026 

CCSM4 1.264 -0.023 1.396 -0.026 1.620 -0.030 

CNRM_CM5 1.189 -0.022 1.352 -0.025 1.554 -0.029 

CanESM2 1.318 -0.024 1.503 -0.028 1.793 -0.033 

IPSL_CM5A_MR 1.296 -0.024 1.454 -0.027 1.807 -0.033 

MIROC_ESM 1.260 -0.023 1.346 -0.025 1.643 -0.030 

MIROC_ESM_CHEM 1.233 -0.023 1.351 -0.025 1.668 -0.031 

MRI_CGCM3 1.161 -0.021 1.275 -0.024 1.489 -0.028 

Notes: Change in temperature and energy poverty is measured in standard deviation. Data on simulated weather conditions 

at the postcode level are from the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP). The 

projection is estimated using the coefficient of -0.0185 reported in Column (1) of Table 2 (Panel A). 



Table 4: Simulated effect of temperature on incidence of being ‘Unable to Heat’ 2021-

2099 

 Representative Concentration Pathway (RCP) 4.5 

 Short-term (2021-2040) Medium-term (2041-2060) Long-term (2061-2099) 

GCM Models Temperature UTH Temperature  UTH Temperature  UTH 

BNU_ESM 1.246 -0.010 1.297 -0.010 1.400 -0.011 

CCSM4 1.266 -0.010 1.314 -0.010 1.384 -0.011 

CNRM_CM5 1.180 -0.009 1.245 -0.010 1.326 -0.010 

CanESM2 1.261 -0.010 1.356 -0.011 1.448 -0.011 

IPSL_CM5A_MR 1.279 -0.010 1.361 -0.011 1.472 -0.011 

MIROC_ESM 1.286 -0.010 1.313 -0.010 1.441 -0.011 

MIROC_ESM_CHEM 1.257 -0.010 1.327 -0.010 1.447 -0.011 

MRI_CGCM3 1.142 -0.009 1.181 -0.009 1.269 -0.010 

 Representative Concentration Pathway (RCP) 8.5 

 Short-term (2021-2040) Medium-term (2041-2060) Long-term (2061-2099) 

GCM Models Temperature  UTH Temperature  UTH Temperature  UTH 

BNU_ESM 1.246 -0.010 1.297 -0.010 1.400 -0.011 

CCSM4 1.264 -0.010 1.396 -0.011 1.620 -0.013 

CNRM_CM5 1.189 -0.009 1.352 -0.011 1.554 -0.012 

CanESM2 1.318 -0.010 1.503 -0.012 1.793 -0.014 

IPSL_CM5A_MR 1.296 -0.010 1.454 -0.011 1.807 -0.014 

MIROC_ESM 1.260 -0.010 1.346 -0.010 1.643 -0.013 

MIROC_ESM_CHEM 1.233 -0.010 1.351 -0.011 1.668 -0.013 

MRI_CGCM3 1.161 -0.009 1.275 -0.010 1.489 -0.012 

Notes: Change in temperature and energy poverty is measured in standard deviation. Data on simulated weather conditions 

at the postcode level are from the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP). UTH stands 

for unable to heat. The projection is estimated using the coefficient of -0.0078 reported in Column (2) of Table 2 (Panel A). 

 

 



Table 5: Alternative measures of energy poverty 

Dependent variable 

Energy 

poverty - 5% 

threshold 

Energy 

poverty - 10% 

threshold 

Energy 

poverty - 15% 

threshold 

Could not pay 

electricity, gas or 

telephone bills on time 

 (1) (2) (3) (4) 

Temperature (Reference: # days temperature between 20-24oC)  

# days below 15oC 0.0006*** 0.0001*** 0.0001*** 0.0006*** 

 (0.0001) (0.0000) (0.0000) (0.0001) 

     

Controlling for rainfall Yes Yes Yes Yes 

Household FE Yes Yes Yes Yes 

State and Time FE Yes Yes Yes Yes 

Observations 125,754 125,754 125,754 124,146 

Notes: Clustered standard errors at postcode level in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

 

 



Table 6: Lagged effects of temperature shocks  

 LIHC Unable to heat 

 (1) (2) (3) (4) 

Temperature (Reference: # days temperature between 20-24oC) 

# days below 15oC – Lag 1 0.0003***  0.0001**  

 (0.0001)  (0.0000)  
# days below 15oC – Lag 2  0.0002***  0.0001* 

  (0.0001)  (0.0000) 

     

Controlling for rainfall Yes Yes Yes Yes 

Household FE No Yes No Yes 

State and Time FE Yes Yes Yes Yes 

Observations 122,523 122,523 117,047 110,814 

Notes: Clustered standard errors at postcode level in parentheses; *** p<0.01, 

** p<0.05, * p<0.1 

 



Table 7: Controlling for different fixed effects 

 LIHC Unable to heat 

 (1) (2) 

Panel A: Controlling for month of interview 

# days below 15oC 0.0003*** 0.0001** 

 (0.0001) (0.0000) 

Panel B: Controlling for state-specific time trend 

# days below 15oC 0.0003*** 0.0001** 

 (0.0001) (0.0000) 

   

Controlling for rainfall Yes Yes 

Household FE Yes Yes 

State and Time FE Yes Yes 

Notes: Clustered standard errors at postcode level in 

parentheses; *** p<0.01, ** p<0.05, * p<0.1 



Table 8: Parameter stability and robustness to omitted variable bias 

  (1) (2) (3) (4) (5) 

Treatment variable 

Coefficient on 

temperature 

without any 

controls 

Coefficient 

on 

temperature 

including 

covariates 

Upper and 

lower bound 

of estimated 

coefficients 

Exclude 

zero? 

Effect for 

unobserved 

variables to bias 

estimates 

Panel A: Outcome is LIHC 

# days below 15oC 0.00030*** 0.00031*** 
[0.00030, 

0.00031] 
Yes 14.220 

Observations 126,143 126,143       

Panel B: Outcome is Unable to heat 

# days below 15oC 0.00004* 0.00009** 
[0.00004, 

0.00009] 
Yes 2.244 

Observations 128,139 128,139       

Notes: Standard errors are clustered at the postcode level; *** p<0.01, ** p<0.05, * p<0.1 

 

 

  



Figure 1: Different bins of temperature 

 

Panel A: 7 bins (Reference: # days temperature between 20-24oC) 

 
Panel B: 9 bins (Reference: # days temperature between 22-24oC) 

 
Notes: The figure shows estimates and their 95% confidence intervals of separate regressions using 

different temperature bins. All regressions include rainfall, state, and time fixed-effects. 

 



Figure 2: Reference category of temperature between 16-18oC (cold postcodes) 

 
Notes: The figure shows estimates and their 95% confidence intervals of separate regressions using 

alternative source of temperature. All regressions include rainfall, state, and time fixed-effects. The 

reference category is temperature between 16-18oC. 

 

 

 



Figure 3: Reference category of temperature between 25-29oC in warm postcodes 

 
Notes: The figure shows estimates and their 95% confidence intervals of separate regressions using 

alternative source of temperature. All regressions include rainfall, state, and time fixed-effects. The 

reference category is temperature between 25-29oC. 

 

 

 

  



Figure 4: Robustness to dropping states one by one 

 

Panel A: LIHC 

 
 

Panel B: Unable to heat 

 
Notes: Reported are treatment effect estimates and their 95% confidence intervals; Each estimate comes 

from a panel fixed-effects regression of energy poverty on temperature shocks and other control 

variables; The state indicated is the excluded state; Standard errors are clustered at the postcode level. 

 



Table A1: Variable descriptions and summary statistics 

 
Variables Description Mean St. Dev 

Energy poverty 

LIHC =1 if household has energy costs are above the 

median level and a residual income after energy 

expenditure is below the poverty line 

0.077 0.266 

Unable to heat =1 if household was unable to heat their home 

because of money shortage 

0.037 0.189 

Temperature shocks    

# days below 15oC Number of days temperature below 15oC 143.226 74.367 

# days between 15-19oC Number of days temperature between 15oC and 

19oC 

108.312 29.398 

# days between 20-24oC Number of days temperature between 20oC and 

24oC 

85.656 48.708 

# days between 25-29oC Number of days temperature between 25oC and 

29oC 

26.028 33.848 

# days above 29oC Number of days temperature above 29oC 1.989 6.685 

Rainfall    

Rainfall Average yearly rainfall 0.002 0.0005 

Other variables    

Year 11 and below Equals 1 if highest educational attainment is 

Year 11 or lower [reference group] 

0.282 0.450 

Year 12 Equals 1 if highest educational qualification is 

completing high school (i.e., Year 12) 

0.126 0.332 

Diploma / Certificate Equals 1 if highest educational qualification is a 

diploma or Level III or IV certificate 

0.335 0.472 

Degree Equals 1 if highest educational qualification is 

bachelor’s degree or higher-level qualification 

0.256 0.437 

Single Equals 1 if not married or living with someone in 

a relationship [reference group] 

0.424 0.494 

Cohabiting Equals 1 if not married, and living with someone 

in a relationship 

0.444 0.497 

Married Equals 1 if married 0.131 0.338 

Income Disposable income (in log) 10.814 0.988 

Age Age of household head 48.933 17.893 

Long-term health condition  Equals 1 if has health condition or disability that 

restricts everyday activity 

0.300 0.458 

Number of dependents Number of dependents 0.498 0.943 

Notes: Monetary units are adjusted for inflation. 

 

 



Table A2: Temperature shocks and energy poverty – Controlling for 

individual/household characteristics 

 LIHC Unable to heat 

  OLS Panel OLS Panel 

 (1) (2) (3) (4) 

Temperature (Reference: # days temperature between 20-24oC) 

# days below 15oC 0.0003*** 0.0003*** -0.0000 0.0001** 

 (0.0001) (0.0001) (0.0000) (0.0000) 

# days between 15-19oC 0.0001 0.0001 0.0000 0.0001** 

 (0.0001) (0.0001) (0.0001) (0.0000) 

# days between 25-29oC 0.0003*** 0.0002*** -0.0001* 0.0000 

 (0.0001) (0.0001) (0.0001) (0.0000) 

# days above 29oC 0.0004** 0.0001 -0.0002 -0.0002 

 (0.0002) (0.0001) (0.0001) (0.0001) 

Education level (Reference: Year 11 and below) 

Year 12 -0.0011 -0.0110 -0.0149*** -0.0220* 

 (0.0050) (0.0141) (0.0036) (0.0129) 

Vocational -0.0026 -0.0257** 0.0008 -0.0102 

 (0.0039) (0.0119) (0.0028) (0.0108) 

Bachelor and higher -0.0073* -0.0067 -0.0128*** -0.0147 

 (0.0039) (0.0146) (0.0027) (0.0127) 

Marital status (Reference: Single) 

Married 0.0040 -0.0084* -0.0335*** -0.0236*** 

 (0.0035) (0.0049) (0.0023) (0.0028) 

Cohabiting -0.0096*** -0.0140*** -0.0244*** -0.0189*** 

 (0.0027) (0.0040) (0.0028) (0.0031) 

Other controls     

Household income (log) -0.0809*** -0.0709*** -0.0180*** -0.0047*** 

 (0.0024) (0.0028) (0.0013) (0.0012) 

Age 0.0010*** 0.0059 -0.0007*** -0.0036 

 (0.0001) (0.0040) (0.0001) (0.0027) 

Long-term health condition 0.0179*** 0.0032 0.0398*** 0.0082*** 

 (0.0029) (0.0028) (0.0023) (0.0018) 

Number of dependents 0.0003 -0.0001 0.0075*** -0.0012 

 (0.0009) (0.0013) (0.0010) (0.0010) 

Rainfall -0.8126 4.1534 -4.7172** -3.1268 

 (3.2134) (2.7886) (2.3769) (1.9569) 

     

Household FE No Yes No Yes 

State and Time FE Yes Yes Yes Yes 

Observations 122,466 122,466 123,606 123,606 

R-squared 0.106 0.385 0.037 0.428 

Notes: Clustered standard errors at postcode level in parentheses; *** p<0.01, ** p<0.05, 

* p<0.1 
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